Q.P. Code: 16EC402

Dag Mas					
Reg. No:					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations August-2022 SWITCHING THEORY AND LOGIC DESIGN

(Electrical and Electronics Engineering)

Ti	ime: 3 hours	x. Marl	ks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I		
1	a Simplify the following Boolean expression: (a) F = (A+B) (A'+C) (B+C).	L4	6M
	b (b) $F = A+B+C'+D$ (E+F).	L4	6M
2	ORa Convert the following to binary and then to gray code.	L2	6M
	(i) (1111)16 (ii) (BC54)16 (iii) (237)8 (iv) (164)10 (v) (323)8 b Perform the following using BCD arithmetic	L2	6M
	(i) (79)10 + (177)10 (ii) (481)10 + (178)10 UNIT-II		
3	a Minimize the following Boolean function using K-Map $F(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8, 10, 12, 14)$.	L4	6M
	b Realize it using NAND Gates.	L4	6M
4	OR Simplify the following Boolean function using Tabulation method $Y(A,B,C,D) = \Sigma(1,3,5,8,9,11,15)$	L4	12M
	UNIT-III		
5	a Design & implement Full Adder with truth table.	L6	6M
	b Design & implement Full Subtractor with truth table. OR	L6	6M
6	Implement 4-bit Magnitude Comparator and write down its design procedure. UNIT-IV	L6	12M
7	a Draw the logic symbol, characteristics table and derive characteristics equation of JK flip flop.	L4	6M
	b Design T Flip Flop by using JK Flip Flop and draw the timing diagram. OR	L6	6M
8	Implement 6-bit ring counter using suitable shift register. Briefly describe its operation.	L6	12M
	UNIT-V		
9	Implement the following Boolean function using PLA (i)F(w,x,y,z) = Σ m(0,1,3,5,9,13) (ii)F(w,x,y,z)) = Σ m(0,2,4,5,7,9,11,15)	L6	12M
	OR		
10	Discuss Mealy & Moore Machine models of sequential machines.	L3	12M